Scientific American Supplement, No. 441, June 14, 1884. by Various


Main
- books.jibble.org



My Books
- IRC Hacks

Misc. Articles
- Meaning of Jibble
- M4 Su Doku
- Computer Scrapbooking
- Setting up Java
- Bootable Java
- Cookies in Java
- Dynamic Graphs
- Social Shakespeare

External Links
- Paul Mutton
- Jibble Photo Gallery
- Jibble Forums
- Google Landmarks
- Jibble Shop
- Free Books
- Intershot Ltd

books.jibble.org

Previous Page | Next Page

Page 2

The apparatus is shown in longitudinal section in Fig. 1, and in plan
in Fig. 2.

Fig. 3 gives a transverse section passing through the line 3-4, and
Fig. 4 an external view on the side whence the decorticated canes make
their exit from the apparatus.

[Illustration: FAURE'S MACHINE FOR DECORTICATING SUGAR CANE.]

The other figures relate to details that will be referred to further
along.

_The Decorticating Cylinder._--The principal part of the apparatus is
a hollow drum, A, of cast iron, 430 mm. in internal diameter by 1.41
m. in length, which is keyed at its two extremities to the shaft, a.
Externally, this drum (which is represented apart in transverse
section in Fig. 5) has the form of an octagonal prism with well
dressed projections between which are fixed the eight plates, C, that
constitute the decorticating cylinder. These plates, which are of
tempered cast iron, and one of which is shown in transverse section in
Fig. 7, when once in place form a cylindrical surface provided with 48
helicoidal, dentate channels. The length of these plates is 470 mm.
There are three of them in the direction of the generatrices of the
cylinder, and this makes a total of 24. All are strengthened by ribs
(as shown in Fig. 8), and each is fixed by 4 bolts, _c_, 20mm. in
diameter. The pitch of the helices of each tooth is very elongated,
and reaches about 7.52 m. The depth of the toothing is 18 mm.

_Frame and Endless Chain._--The cylinder thus constructed rotates with
a velocity of 50 revolutions per minute over a cylindrical vessel, B',
cast in a piece with the frame, B. This vessel is lined with two
series of tempered cast iron plates, D and D', called exit and
entrance plates, which rest thereon, through the intermedium of well
dressed pedicels, and which are held in place by six 20-millimeter
bolts. Their length is 708 mm. The entrance plates, D, are provided
with 6 spiral channels, whose pitch is equal to that of the channels
of the decorticating cylinder, C, and in the same direction. The depth
of the toothing is 10 mm.

The exit plates, D', are provided with 7 spiral channels of the same
pitch and direction as those of the preceding, but the depth of which
increases from 2 to 10 mm. The axis of the decorticating cylinder does
not coincide with that of the vessel, B', so that the free interval
for the passage of the cane continues to diminish from the entrance to
the exit.

The passage of the cane to the decorticator gives rise to a small
quantity of juice, which flows through two orifices, _b'_, into a sort
of cast iron trough, G, suspended beneath the vessel. The cane, which
is brought to the apparatus by an endless belt, empties in a conduit
formed of an inclined bottom, E, of plate iron, and two cast iron
sides provided with ribs. These sides rest upon the two ends of the
vessel, B', and are cross-braced by two flat bars, _e_, to which is
bolted the bottom, E. This conduit is prolonged beyond the
decorticating cylinder by an inclined chute, F, the bottom of which is
made of plate iron 7 mm. thick and the sides of the same material 9
mm. thick. The hollow frame, B, whose general form is like that of a
saddle, carries the bearings, _b_, in which revolves the shaft, _a_.
One of these bearings is represented in detail in Figs. 9 and 10. It
will be seen that the cap is held by bolts with sunken heads, and that
the bearing on the bushes is through horizontal surfaces only. In a
piece with this frame are cast two similar brackets, B�, which support
the axle, _h_, of the endless chain. To this axle, whose diameter is
100 mm., are keyed, toward the extremities, the pinions, H, to which
correspond the endless pitch chains, _i_. These latter are formed, as
may be seen in Figs. 11 and 12, of two series of links. The shorter of
these latter are only 100 mm. in length, while the longer are 210 mm.,
and are hollowed out so as to receive the butts of the boards, I. The
chain thus formed passes over two pitch pinions, J, like the pinions,
H, that are mounted at the extremities of an axle, _j_, that revolves
in bearings, I', whose position with regard to the apparatus is
capable of being varied so as to slacken or tauten the chain, I. This
arrangement is shown in elevation in Fig. 13.

_Transmission._--The driving shaft, _k_, revolves in a pillow block,
K, cast in a piece with the frame, B. It is usually actuated by a
special motor, and carries a fly-wheel (not shown in the figure for
want of space). It receives in addition a cog-wheel, L, which
transmits its motion to the decorticating cylinder through, the
intermedium of a large wooden-toothed gear wheel, L'. The shaft, _a_,
whose diameter is 228 mm., actuates in its turn, through the pinions,
M' and M, the pitch pinion, N, upon whose prolonged hub is keyed the
pinion, M. This latter is mounted loosely upon the intermediate axle,
_m_. Motion is transmitted to the driving shaft, _h_, of the endless
chain, I, by an ordinary pitch chain, through a gearing which is shown
in Fig. 12. The pitch pinion, N', is cast in a piece with a hollow
friction cone, N�, which is mounted loosely upon the shaft, _h_, and
to which corresponds a second friction cone, O. This latter is
connected by a key to a socket, _o_, upon which it slides, and which
is itself keyed to the shaft, _h_. The hub of the cone, O, is
connected by a ring with a bronze nut, _p_, mounted at the threaded
end of the shaft, _h_, and carrying a hand-wheel, P. It is only
necessary to turn this latter in one direction or the other in order
to throw the two cones into or out of gear.

Previous Page | Next Page


Books | Photos | Paul Mutton | Wed 24th Apr 2024, 16:48