|
Main
- books.jibble.org
My Books
- IRC Hacks
Misc. Articles
- Meaning of Jibble
- M4 Su Doku
- Computer Scrapbooking
- Setting up Java
- Bootable Java
- Cookies in Java
- Dynamic Graphs
- Social Shakespeare
External Links
- Paul Mutton
- Jibble Photo Gallery
- Jibble Forums
- Google Landmarks
- Jibble Shop
- Free Books
- Intershot Ltd
|
books.jibble.org
Previous Page
| Next Page
Page 30
IV.
Mr. Frank Livesey, in the concluding sentence of a paper read before
the Southern District Association of Gas Managers and Engineers during
the past month, on "A Ready Means of Enriching Coal Gas," speaking of
enrichment by gasolene by the Maxim-Clarke process, said "it should,
in many cases, take the place of cannel, to be replaced in its turn,
probably, by a water gas carbureted to 20 or 25 candle power." And
now, having fully reviewed the methods either in use or proposed for
the enrichment of gas, we will pass on to this, the probable cannel of
the future.
Discovered by Fontana, in 1780, and first worked by Ibbetson, in
England, in 1824, water gas has added a voluminous chapter to the
patent records of England, France, and America, no less than sixty
patents being taken out between 1824 and 1858, in which the action of
steam on incandescent carbon was the basis for the production of an
inflammable gas.
Up to the latter date the attempts to make and utilize water gas all
met with failure; but about this time the subject began to be taken up
in America, and the principle of the regenerator, enunciated by
Siemens in 1856, having been pressed into service in the water-gas
generator under the name of fixing chambers or superheaters, we find
water gas gradually approaching the successful development to which it
has attained in the United States during the last ten years. Having
now, by the aid of American skill, been brought into practical form,
it is once more attempting to gain a foothold in Western Europe--the
land of its birth.
When carbon is acted upon at high temperatures by steam, the first
action which takes place is the decomposition of the water vapor, the
hydrogen being liberated, while the oxygen unites with the carbon to
form carbon dioxide:
Carbon. Water.
C + 2H2O = CO2 + 4H2
And the carbon dioxide so produced interacts with more red-hot carbon,
forming the lower oxide--carbon monoxide:
CO2 + C = 2CO
So that the completed reaction may be looked upon as yielding a
mixture of equal volumes of hydrogen and carbon monoxide, both of them
inflammable but non-luminous flames. This decomposition, however, is
rarely completed, and a certain proportion of carbon dioxide is
invariably to be found in the water gas, which, in practice, generally
consists of a mixture of about this composition:
WATER GAS.
Hydrogen 48.31
Carbon monoxide 35.93
Carbon dioxide 4.25
Nitrogen 8.75
Methane 1.05
Sulphureted hydrogen 1.20
Oxygen 0.51
------
100.00
The above is an analysis of water gas made from ordinary gas coke in a
Van Steenbergh generator.
The ratio of carbon monoxide and carbon dioxide present entirely
depends upon the temperature of the generator, and the kind of
carbonaceous matter employed. With a hard, dense anthracite coal, for
instance, it is quite possible to attain a temperature at which there
is practically no carbon dioxide produced, while with an ordinary form
of generator and a loose fuel like coke, a large proportion of carbon
dioxide is generally to be found.
The sulphureted hydrogen in the analysis quoted is, of course, due to
the high amount of sulphur to be found in the gas coke, and is
practically absent from water gas made with anthracite, while the
nitrogen is due to the method of manufacture, the coke being, in the
first instance, raised to incandescence by an air blast, which leaves
the generator and pipes full of a mixture of nitrogen and carbon
monoxide (producer gas), which is carried over by the first portions
of water gas into the holder. The water gas so made has no photometric
value, its constituents being perfectly non-luminous, and attempts to
use it as an illuminant have all taken the form of incandescent
burners, in which thin mantles or combs of highly refractory metallic
oxides have been heated to incandescence. In carbureted water gas this
gas is only used as the carrier of illuminating hydrocarbon gases,
made by decomposing various grades of hydrocarbon oils into permanent
gases by heat.
Previous Page
| Next Page
|
|