The Future of Astronomy by Edward C. Pickering


Main
- books.jibble.org



My Books
- IRC Hacks

Misc. Articles
- Meaning of Jibble
- M4 Su Doku
- Computer Scrapbooking
- Setting up Java
- Bootable Java
- Cookies in Java
- Dynamic Graphs
- Social Shakespeare

External Links
- Paul Mutton
- Jibble Photo Gallery
- Jibble Forums
- Google Landmarks
- Jibble Shop
- Free Books
- Intershot Ltd

books.jibble.org

Previous Page | Next Page

Page 3

The American Astronomical Society met last August at a summer resort on
Lake Erie. About thirty astronomers read papers, and in a large portion
of the cases the appropriation of a few hundred dollars would have
permitted a great extension in these researches. A sad case is that of a
brilliant student who may graduate at a college, take a doctor's degree
in astronomy, and perhaps pass a year or two in study at a foreign
observatory. He then returns to this country, enthusiastic and full of
ideas, and considers himself fortunate in securing a position as
astronomer in a little country college. He now finds himself overwhelmed
with work as a teacher, without time or appliances for original work.
What is worse, no one sympathizes with him in his aspirations, and after
a few years he abandons hope and settles down to the dull routine of
lectures, recitations and examinations. A little encouragement at the
right time, aid by offering to pay for an assistant, for a suitable
instrument, or for publishing results, and perhaps a word to the
president of his college if the man showed real genius, might make a
great astronomer, instead of a poor teacher. For several years, a small
fund, yielding a few hundred dollars annually, has been disbursed at
Harvard in this way, with very encouraging results.

A second method of aiding astronomy is through the large observatories.
These institutions, if properly managed, have after years of careful
study and trial developed elaborate systems of solving the great
problems of the celestial universe. They are like great factories, which
by taking elaborate precautions to save waste at every point, and by
improving in every detail both processes and products, are at length
obtaining results on a large scale with a perfection and economy far
greater than is possible by individuals, or smaller institutions. The
expenses of such an observatory are very large, and it has no pecuniary
return, since astronomical products are not salable. A great portion of
the original endowment has been spent on the plant, expensive buildings
and instruments. Current expenditures, like library expenses, heating,
lighting, etc., are independent of the output. It is like a man swimming
up stream. He may struggle desperately, and yet make no progress. Any
gain in power effects a real advance. This is the condition of nearly
all the larger observatories. Their income is mainly used for current
expenses, which would be nearly the same whatever their output. A
relatively small increase in income can thus be spent to great
advantage. The principal instruments are rarely used to their full
capacities, and the methods employed could be greatly extended without
any addition to the executive or other similar expenses. A man
superintending the work of several assistants can often have their
number doubled, and his output increased in nearly the same proportion,
with no additional expense except the moderate one of their salaries. A
single observatory could thus easily do double the work that could be
accomplished if its resources were divided between two of half the
size.

A third, and perhaps the best, method of making a real advance in
astronomy is by securing the united work of the leading astronomers of
the world. The best example of this is the work undertaken in 1870 by
the Astronomische Gesellschaft, the great astronomical society of the
world. The sky was divided into zones, and astronomers were invited to
measure the positions of all the stars in these zones. The observation
of two of the northern and two of the southern zones were undertaken by
American observatories. The zone from +1� to +5� was undertaken by the
Chicago Observatory, but was abandoned owing to the great fire of 1871,
and the work was assumed and carried to completion by the Dudley
Observatory at Albany. The zone from +50� to +55� was undertaken by
Harvard. An observer and corps of assistants worked on this problem for
a quarter of a century. The completed results now fill seven quarto
volumes of our annals. Of the southern zones, that from -14� to -18� was
undertaken by the Naval Observatory at Washington, and is now finished.
The zone from -10� to -14� was undertaken at Harvard, and a second
observer and corps of assistants have been working on it for twenty
years. It is now nearly completed, and we hope to begin its publication
this year. The other zones were taken by European astronomers. As a
result of the whole, we have the precise positions of nearly a hundred
and fifty thousand stars, which serve as a basis for the places of all
the objects in the sky.

Another example of cooperative work is a plan proposed by the writer in
1906, at the celebration of the two-hundredth anniversary of the birth
of Franklin. It was proposed, first to find the best place in the world
for an astronomical observatory, which would probably be in South
Africa, to erect there a telescope of the largest size, a reflector of
seven feet aperture. This instrument should be kept at work throughout
every clear night, taking photographs according to a plan recommended by
an international committee of astronomers. The resulting plates should
not be regarded as belonging to a single institution, but should be at
the service of whoever could make the best use of them. Copies of any,
or all, would be furnished at cost to any one who wished for them. As an
example of their use, suppose that an astronomer at a little German
University should discover a law regulating the stars in clusters.
Perhaps he has only a small telescope, near the smoke and haze of a
large city, and has no means of securing the photographs he needs. He
would apply to the committee, and they would vote that ten photographs
of twenty clusters, each with an exposure of an hour, should be taken
with the large telescope. This would occupy about a tenth part of the
time of the telescope for a year. After making copies, the photographs
would be sent to the astronomer who would perhaps spend ten years in
studying and measuring them. The committee would have funds at their
disposal to furnish him, if necessary, with suitable measuring
instruments, assistants for reducing the results, and means for
publication. They would thus obtain the services of the most skilful
living astronomers, each in his own special line of work, and the latter
would obtain in their own homes material for study, the best that the
world could supply. Undoubtedly, by such a combination if properly
organized, results could be obtained far better than is now possible by
the best individual work, and at a relatively small expense. Many years
of preparation will evidently be needed to carry out such a plan, and to
save time we have taken the first step and have sent a skilful and
experienced observer to South Africa to study its climate and compare it
with the experience he has gained during the last twenty years from a
similar study of the climate of South America and the western portion of
the United States.

Previous Page | Next Page


Books | Photos | Paul Mutton | Mon 10th Mar 2025, 20:20